Execution Right Delegation Scheduling Algorithm for Multiprocessor

2021/12/20-23
IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC 2021)

Japan Advanced Institute of Science and Technology
Takaharu Suzuki, Kiyofumi Tanaka
Agenda

• Introduction
• ERD (Execution Right Delegation) Algorithm
• ERD for Multiprocessor (mERD)
• Evaluation
Introduction ... Scheduling in Operating System

273 Processes
3367 Threads

These tasks are scheduled by OS
Introduction ... Scheduling in Operating System

• Windows/Linux ... Time sliced scheduling
Introduction ... RT Scheduling Algorithm

• What is Real-Time Scheduling Algorithm?
 • Schedule many tasks effectively and efficiently
 • Deadline is given each task
Introduction ... RT Scheduling Algorithm

• What is Real-Time Scheduling Algorithm?
 • Schedule many tasks effectively and efficiently
 • Deadline is given each task

• Task (a.k.a. process / thread)
 • Model in scheduling algorithm
 • Computation that is executed by CPU
 • Release infinite sequence of jobs periodically
 • Priority is given
Introduction ... Task

• Denoted as τ_i
• Has period T_i, worst case execution time (WCET) C_i
 • Execution has to be finished until deadline (τ_i = period)
• $ex: \tau_1 = (C_1, T_1) = (2, 5)$
Introduction ... Task Set

• Task set, denoted as $\Gamma = \{\tau_1, \tau_2, \ldots, \tau_n\}$
 • $ex : \Gamma = \{\tau_1, \tau_2, \tau_3\}$
 • $\tau_1 = (1, 4)$
 • $\tau_2 = (1, 5)$
 • $\tau_3 = (2, 8)$
Introduction ... Rate Monotonic (RM)

• Task whose period is shorter has higher priority
 • $\tau_1 = (1, 4)$
 • $\tau_2 = (1, 5)$
 • $\tau_3 = (2, 8)$

Priority: $\tau_1 > \tau_2 > \tau_3$
Introduction ... Rate Monotonic (RM)

• Task whose period is shorter has higher priority
 • $\tau_1 = (1, 4)$
 • $\tau_2 = (1, 5)$
 • $\tau_3 = (2, 8)$

Priority: $\tau_1 > \tau_2 > \tau_3$
Agenda

• Introduction
• ERD (Execution Right Delegation) Algorithm
• ERD for Multiprocessor (mERD)
• Evaluation
ERD (Execution Right Delegation)

• In RM,
 • Task whose period is shorter has higher priority
 • Priority is assigned regardless it’s importance

• In ERD,
 • Introduces high priority server VS to task set
 • Important, but longer period task τ_p is executed instead of VS
ERD ... VS Algorithm

- Candidate of high priority server $VS = (C_s, T_s)$ is given by:

$$C_s = \begin{cases}
C_p, & \text{if } R_p \leq T_{p-1} \\
idle'(T_s), & \text{otherwise}
\end{cases}$$

where

$$T_s = \begin{cases}
T_h, & \text{if } R_p \leq T_{p-1} \\
t \in \Psi, & \text{otherwise}
\end{cases}$$

$$\Psi = \{T_1, T_2, ..., T_{p-1}\}$$

$$T_h = \min(\{t \mid t \in \Psi, R_p \leq t\})$$

$$idle'(t) = t - \sum_{j=1}^{p-1} \left\lfloor \frac{t}{T_j} \right\rfloor C_j$$
ERD ... Example

• $\Gamma = \{\tau_1, \tau_2, \tau_3\} = \{(1, 5), (2, 6), (4, 13)\}$

• $\tau_p = \tau_3$
ERD ... Example

\[T_1 = 5 \]
\[T_2 = 6 \]
\[R_p = 10 \leq T_2 \]

\[T_s = 5 \]

\[C_s = \begin{cases}
C_p, & \text{if } R_p \leq T_{p-1} \\
idle'(T_s), & \text{otherwise}
\end{cases} \]

\[T_s = \begin{cases}
T_h, & \text{if } R_p \leq T_{p-1} \\
t \in \Psi, & \text{otherwise}
\end{cases} \]

where
\[\Psi = \{T_1, T_2, \ldots, T_{p-1}\} \]
ERD ... Example

\[C_s = \begin{cases}
C_p, & \text{if } R_p \leq T_{p-1} \\
\text{idle}'(T_s), & \text{otherwise}
\end{cases} \]

\[T_s = \begin{cases}
T_h, & \text{if } R_p \leq T_{p-1} \\
t \in \Psi, & \text{otherwise}
\end{cases} \]

where

\[\Psi = \{T_1, T_2, ..., T_{p-1}\} \]

\[\text{idle}'(t) = t - \sum_{j=1}^{p-1} \left\lceil \frac{t}{T_j} \right\rceil C_j \quad (t \in \Psi) \]

- \(T_s = 5 \)
- \(C_s = 2 \)

\(\text{idle}'(5) = 2 \)
ERD ... Example

\[C_s = \begin{cases}
 C_p, & \text{if } R_p \leq T_{p-1} \\
 \text{idle}'(T_s), & \text{otherwise}
\end{cases} \]

\[T_s = \begin{cases}
 T_h, & \text{if } R_p \leq T_{p-1} \\
 t \in \Psi, & \text{otherwise}
\end{cases} \]

where

\[\Psi = \{T_1, T_2, \ldots, T_{p-1}\} \]

\[\text{idle}'(t) = t - \sum_{j=1}^{p-1} \left\lfloor \frac{t}{T_j} \right\rfloor C_j \quad (t \in \Psi) \]

\[T_s = 5 \]
\[C_s = 2 \]

\[VS = \{C_s, T_s\} = \{2, 5\} \]
ERD ... Example

\[\tau_p = \tau_3 \]

\[VS = \{2, 5\} \]
ERD ... Example

- $\tau_p = \tau_3$
- $VS = \{2, 5\}$

Response time has shortened: 10 → 7
Agenda

• Introduction
• ERD (Execution Right Delegation) Algorithm
• ERD for Multiprocessor (mERD)
• Evaluation
System Model

• Based on partitioned Fixed Task Priority (pFTP)

• Only τ_p can be migrated
 -> mERD is semi-partitioned scheduling

• Each processor P_i has VS_i
System Model

- Based on partitioned Fixed Task Priority (pFTP)
- Only τ_p can be migrated
 - \rightarrow mERD is semi-partitioned scheduling
- Each processor P_i has VS_i
mERD Scheduling Rule

- **Primary Processor**...
 - A processor which τ_p is assigned
 - Must has VS_p

- **None-primary Processor**...
 - Has VS_i if idle time is available

idle time...
A period which any job is not executed until
$t \in \{T_1, T_2, \ldots T_n\}$
mERD Scheduling Rule

• τ_p’s job is executed in primary when released

• Migrate to P_i ...
 • If P_i is idle (no job is executed)

 • If VS_i is in the highest in ready que
Example of mERD

Two processors \(\{P_1, P_2\}\), and two task sets \(\Gamma_1 = \{\tau_1, \tau_2\}, \Gamma_2 = \{\tau_3, \tau_4\}\)

pFTP \(\Rightarrow\) Response time of \(\tau_2\) is 7
Example of mERD

Let τ_2 be a τ_p and P_1 is a primary processor

$VS_1 = \{2, 4\}, VS_2 = \{1, 6\}$ is derived by Definition 7
Example of mERD

Response time
7 -> 3
Agenda

• Introduction
• ERD (Execution Right Delegation) Algorithm
• ERD for Multiprocessor (mERD)
• Evaluation
Evaluation Environment

• Following scheduling algorithm are evaluated:
 • pFTP_RM (Partitioned RM) = Baseline
 • pFTP_DM (Deadline Monotonic)
 • pERD
 • mERD
 • gFTP

• With two processors
Results

Ratio of task sets with shortened WCRT.
Results

Average WCRT normalized to RM
Agenda

• Introduction
• ERD (Execution Right Delegation) Algorithm
• ERD for Multiprocessor (mERD)
• Evaluation